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Abstract
State abstraction optimizes decision-making by ig-
noring irrelevant environmental information in re-
inforcement learning with rich observations. Nev-
ertheless, recent approaches focus on adequate rep-
resentational capacities resulting in essential infor-
mation loss, affecting their performances on chal-
lenging tasks. In this article, we propose a novel
mathematical Structural Information principles-
based State Abstraction framework, namely SISA,
from the information-theoretic perspective. Specif-
ically, an unsupervised, adaptive hierarchical state
clustering method without requiring manual as-
sistance is presented, and meanwhile, an optimal
encoding tree is generated. On each non-root
tree node, a new aggregation function and con-
dition structural entropy are designed to achieve
hierarchical state abstraction and compensate for
sampling-induced essential information loss in
state abstraction. Empirical evaluations on a vi-
sual gridworld domain and six continuous control
benchmarks demonstrate that, compared with five
SOTA state abstraction approaches, SISA signifi-
cantly improves mean episode reward and sample
efficiency up to 18.98 and 44.44%, respectively.
Besides, we experimentally show that SISA is a
general framework that can be flexibly integrated
with different representation-learning objectives to
improve their performances further.

1 Introduction
Reinforcement Learning (RL) is a promising approach to in-
telligent decision-making for a variety of complex tasks, such
as robot walking [Collins et al., 2005], recommending sys-
tems [Ie et al., 2019], automating clustering [Zhang et al.,
2022], abnormal detection [Peng et al., 2021], and multi-
agent collaboration [Baker et al., 2020; Peng et al., 2022].
In the RL setting, agents often learn to maximize their re-
wards in environments with high-dimensional and noisy ob-
servations, which requires suitable state representations [Jong
and Stone, 2005; Kaiser et al., 2019]. A valid solution is state

abstraction, which can ignore irrelevant environmental infor-
mation to compress the original state space, thereby consid-
erably simplifying the decision process [Abel et al., 2016;
Laskin et al., 2020b].

Prior work defines state-abstraction types via aggregation
functions that group together “sufficiently similar” states for
reductions in task complexity [Li et al., 2006; Hutter, 2016;
Abel et al., 2016; Abel et al., 2018]. However, their abstrac-
tion performances heavily depend on manual assistance due
to high sensitivity to aggregation parameters, such as approx-
imate abstraction’s predicate constant and transitive abstrac-
tion’s bucket size. On the other hand, recent work transfers
state abstraction into a representation-learning problem and
incorporates various learning objectives to enable state rep-
resentations with desirable properties [Gelada et al., 2019;
Zhang et al., 2020; Zang et al., 2022; Zhu et al., 2022].
Despite their adequate representational capacities, these ap-
proaches discard some essential information about state dy-
namics or rewards, making them hard to characterize the en-
vironment accurately. Therefore, balancing irrelevant and es-
sential information is vital for decision-making with rich ob-
servations. Recently, Markov state abstraction [Allen et al.,
2021] is introduced to realize this balance, reflecting the orig-
inal rewards and transition dynamics while guaranteeing its
representational capacity. Nevertheless, representation learn-
ing based on sampling from finite replay buffers inevitably
induces essential information loss in Markov abstraction, af-
fecting its performance on challenging tasks. Although multi-
agent collaborative role discovery based on structural infor-
mation principles has been proposed [Zeng et al., 2023], it is
not available in the RL scenario of a single agent.

In this paper, we propose a novel mathematical Structural
Information principles-based hierarchical State Abstraction
framework, namely SISA, from the information-theoretic
perspective. The critical insight is that SISA combines hi-
erarchical state clustering and aggregation of different hier-
archies to achieve sample-efficient hierarchical abstraction.
Inspired by the structural entropy minimization principle [Li
and Pan, 2016; Li et al., 2018], we first present an unsu-
pervised, adaptive hierarchical state clustering method with-
out requiring manual assistance. It consists of structuraliza-
tion, sparsification, and optimization modules, to construct



an optimal encoding tree. Secondly, an effective autoencoder
structure and representation-learning objectives are adopted
to learn state embeddings and refine the hierarchical cluster-
ing. Thirdly, for non-root tree nodes of different heights, we
define a new aggregation function using the assigned struc-
tural entropy as each child node’s weight, thereby achiev-
ing the hierarchical state abstraction. The hierarchical ab-
straction from leaf nodes to the root on the optimal encoding
tree is an automatic process of ignoring irrelevant informa-
tion and preserving essential information. Moreover, a new
conditional structural entropy is designed to reconstruct the
relation between original states to compensate for sampling-
induced essential information loss. Furthermore, SISA is a
general framework and can be flexibly integrated with various
representation-learning abstraction approaches, e.g., Markov
abstraction [Allen et al., 2021] and SAC-AE [Yarats et al.,
2021], for improving their performances. Extensive experi-
ments are conducted in both offline and online environments
with rich observations, including one gridworld navigation
task and six continuous control benchmarks. Comparative re-
sults and analysis demonstrate the performance advantages of
the proposed state abstraction framework over the five latest
SOTA baselines. All source codes and experimental results
are available at Github1.

The main contributions of this paper are as follows: 1)
Based on the structural information principles, an innovative,
unsupervised, adaptive hierarchical state abstraction frame-
work (SISA) without requiring manual assistance is proposed
to optimize RL in rich environments. 2) A novel aggrega-
tion function leveraging the assigned structural entropy is de-
fined to achieve hierarchical abstraction for efficient decision-
making. 3) A new conditional structural entropy reconstruct-
ing state relations is designed to compensate for essential in-
formation loss in abstraction. 4) The remarkable performance
on challenging tasks shows that SISA achieves up to 18.98
and 44.44% improvements in the final performance and sam-
ple efficiency than the five latest SOTA baselines.

2 Background
2.1 Markov Decision Process
In RL, the problem to resolve is described as a Markov
Decision Process (MDP) [Bellman, 1957], a tuple M =
(S,A,R,P, γ), where S is the original state space, A is the
action space, R is the reward function, P (s′ | s, a) is the
transitioning probability from state s ∈ S to state s′ ∈ S
conditioning on an action a ∈ A, and γ ∈ [0, 1) is the dis-
count factor. At each timestep, an agent chooses an action
a ∈ A according to its policy function a ∼ π(s), which up-
dates the environment state s′ ∼ P(s, a), yielding a reward
r ∼ R(s, a) ∈ R. The goal of the agent is to learn a policy
that maximizes long-term expected discounted reward.

2.2 State Abstraction
Following Markov state abstraction [Allen et al., 2021], we
define state abstraction as a function fϕ that projects each
original state s ∈ S to an abstract state z ∈ Z . When

1https://github.com/RingBDStack/SISA

applied to an MDP M = (S,A,R,P, γ), the state ab-
straction induces a new abstract decision process Mϕ =
(Z,A,Rϕ,Pϕ, γ), where typically |Z| ≪ |S|.

2.3 Structural Information Principles
Structural information principles were first proposed to mea-
sure the dynamical uncertainty of a graph, called structural
entropy [Li and Pan, 2016]. They have been widely ap-
plied to optimize graph classification and node classifica-
tion [Wu et al., 2022a; Wu et al., 2022b; Zou et al., 2023;
Wang et al., 2023; Yang et al., 2023], obfuscate community
structures [Liu et al., 2019], and decode the chromosomes do-
mains [Li et al., 2018]. By minimizing the structural entropy,
we can generate the optimal partitioning tree, which we name
an “encoding tree”.

We suppose a weighted undirected graph G = (V,E,W ),
where V is the vertex set2, E is the edge set, and W : E 7→
R+ is the weight function of edges. Let n = |V | be the
number of vertices and m = |E| be the number of edges. For
each graph vertex v ∈ V , the weights sum of its connected
edges is defined as its degree dv .
Encoding tree. The encoding tree of graph G is a rooted tree
defined as follows: 1) For each node α ∈ T , a vertex subset
Tα in G corresponds with α, Tα ⊆ V . 2) For the root node λ,
we set Tλ = V . 3) For each node α ∈ T , we mark its children
nodes as α∧⟨i⟩ ordered from left to right as i increases, and
α∧⟨i⟩− = α. 4) For each node α ∈ T , L is supposed as
the number of its children; then all vertex subsets Tα∧⟨i⟩ are
disjointed, and Tα =

⋃L
i=1 Tα∧⟨i⟩. 5) For each leaf node ν,

Tν is a singleton subset containing a graph vertex.
One-dimensional structural entropy. The one-dimensional
structural entropy3 measures the dynamical complexity of the
graph G without any partitioning structure and is defined as:

H1(G) = −
∑
v∈V

dv
vol(G)

· log2
dv

vol(G)
, (1)

where vol(G) =
∑

v∈V dv is the volume of G.
K-dimensional structural entropy. An encoding tree T ,
whose height is at most K, can effectively reduce the dynami-
cal complexity of graph G, and the K-dimensional structural
entropy measures the remaining complexity. For each node
α ∈ T, α ̸= λ, its assigned structural entropy is defined as:

HT (G;α) = − gα
vol(G)

log2
Vα

Vα−
, (2)

where gα is the sum of weights of all edges connecting ver-
tices in Tα with vertices outside Tα. Vα is the volume of Tα,
the sum of degrees of vertices in Tα. Given the encoding tree
T , the K-dimensional structural entropy of G is defined as:

HK(G) = min
T

 ∑
α∈T,α ̸=λ

HT (G;α)

 , (3)

where T ranges over all encoding trees whose heights are at
most K, and the dimension K constraints the maximal height
of the encoding tree T .

2Vertices are defined in the graph, and nodes are in the tree.
3It is another form of Shannon entropy using the stationary dis-

tribution of the vertex degrees.

https://github.com/RingBDStack/SISA
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Figure 1: The proposed SISA framework.

3 The SISA Framework
This section describes the detailed design of the structural in-
formation principles-based state abstraction and how to apply
SISA to optimize RL.

3.1 Overall RL Framework Optimized by SISA
For better descriptions, we first introduce how to apply SISA
to optimize RL framework. The optimized RL framework
consists of three modules: Environment, Agent Network Q,
and the proposed state abstraction SISA, as shown in Fig. 1.
The decision process in the environment is labeled as an MDP
M = (S,A,R,P, γ), where the original state space S is
high-dimensional and noisy. SISA described in the follow-
ing subsection takes action-observation history τ as input and
maps each original environment state s ∈ S to an abstract
state z ∈ Z , where |Z| ≪ |S|. Moreover, the agent makes
decisions based on its individual network Q taking the ab-
stract state z and reward r as inputs, which induces a new
abstract decision process Mϕ = (Z,A,Rϕ,Pϕ, γ).

3.2 Hierarchical State Abstraction
As shown in Fig. 1, SISA includes pretrain, finetune, and
abstract stages. In the pretrain stage, we map the original
state space to a dense low-dimensional latent space and adopt
representation-learning objectives to decode. In the finetune
stage, we sparsify a state graph, optimize its encoding tree
to obtain a hierarchical state structure, and calculate a clus-
tering loss. In the abstract stage, we construct a hierarchical
state graph and extract transition, action, and reward relations
to calculate a structural information (SI) loss.
Pretrain. For tractable decision-making in high-dimensional
and noisy environments, we utilize representation-learning
objectives to compress the original state space via an abstrac-
tion function, as the level-0 abstraction.

To this end, we adopt the encoder-decoder structure [Cho et
al., 2014] to learn abstract state representations, mapping the
state space S to a low-dimensional and dense abstract state
space Z. In the encoder, we encode each state s ∈ S as a
d-dimensional embedded representation z ∈ Z via the ab-

straction function fϕ : S → Z, as the step 1 in Fig. 24. In the
decoder, we decode each abstract representation z and select
the training objectives in Markov state abstraction, including
constructive and adversarial objectives, for calculating the de-
coding loss Lde to guarantee Markov property in the pretrain
stage, as the step 2 in Fig. 2. Given the action-observation
history τ , the encoder-decoder structure is trained end-to-end
by minimizing Lde. Furthermore, the abstraction function fϕ
will be further optimized in the finetune and abstract stages
by minimizing the clustering loss Lcl and SI loss Lsi.
Finetune. Instead of aggregation condition definitions [Abel
et al., 2018] or representation learning in the original state
space [Gelada et al., 2019; Laskin et al., 2020a; Zhang et
al., 2020], we present an unsupervised, adaptive hierarchical
clustering method without requiring manual assistance to ob-
tain the hierarchical structure of environment states. Specif-
ically, we construct a weighted, undirected, complete state
graph according to state correlations, minimize its structural
entropy to get the optimal encoding tree, and calculate the
clustering loss based on Kullback-Leibler (KL) divergence.

Firstly, for states si and sj with i ̸= j, we calculate the
cosine similarity between abstract representations zi and zj
to measure their correlation Cij ∈ [−1, 1]. Intuitively, the
larger the value of Cij represents the more similarity between
states si and sj , which should belong to the same cluster with
a more significant probability. We take states as vertices and
for any two vertices si and sj , assign Ci,j to the undirected
weighted edge (si, sj), wij = Cij , thereby constructing the
complete graph G, as the step 3 in Fig. 2. In G, vertices
represent states in S, namely V = S, edges represent state
correlations, and edge weight quantifies the cosine similarity
between states. We define edge weight whose absolute value
approaches 0 as trivial weight.

Secondly, we realize sparsification of the state graph to
eliminate negative interference of trivial weights. Following
the construction of cancer cell neighbor networks [Li et al.,
2016], we minimize the one-dimensional structural entropy
to sparsify graph G into a k-nearest neighbor (k-NN) graph
Gk, as the step 4 in Fig. 2. We retain the most significant
k edge weights for each vertex to construct Gk, calculate its
one-dimensional structural entropy H1(Gk), select parame-
ter k of the minimum structural entropy as k∗, and output
Gk∗ as the sparse state graph G∗. Moreover, we initialize an
encoding tree T of G∗: 1) We generate a root node λ and set
its vertex subset Tλ = S as the whole state space; 2) We gen-
erate a leaf node ν with Tν = {s} for each state s ∈ S, and
set it as a child node of λ, ν− = λ.

Thirdly, we realize the hierarchical state clustering by op-
timizing the encoding tree T from 1 layer to K layers. In our
work, two operators merge and combine are introduced from
the deDoc [Li et al., 2018] to optimize the sparse graph G∗

by minimizing its K-dimensional structural entropy, as the
step 5 in Fig. 2. We define two nodes possessing a common
father node in the encoding tree T are brothers. The merge
and combine are operated on brother nodes and marked as
Tmg and Tcb. We summarize the encoding tree optimization

4For better understanding, we set S = {s0, s1 . . . , s11} in the
original state space as an example.
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Figure 2: The proposed state abstraction SISA.

as an iterative algorithm, as shown in Algorithm 1. At each
iteration, we traverse all brother nodes β1 and β2 in T (lines 4
and 9) and greedily execute operator Tmg or Tcb to realize the
maximum structural entropy reduction ∆SE if the tree height
does not exceed K (lines 5 and 10). When no brother nodes
satisfy ∆SE > 0 or the tree height exceeds K, we termi-
nate the iterative algorithm and output the optimal encoding
tree T ∗. The tree T ∗ is a hierarchical clustering structure of
the state space S, where the root node λ corresponds to S,
Tλ = S, each leaf node ν corresponds to a singleton con-
taining a single state s ∈ S, Tν = {s}, and other tree nodes
correspond to state clusters with different hierarchies.

Finally, we choose each child λ∧⟨i⟩ of the root node λ as
a cluster center and define a structural probability distribu-
tion among its corresponding vertex set Tλ∧⟨i⟩ to calculate its
embedding Ci. For each vertex sj ∈ Tλ∧⟨i⟩, we define its dis-
tribution probability using the sum of the assigned structural
entropies of nodes on the path connecting its corresponding
leaf node νj and node λ∧⟨i⟩ as follows:

pλ∧⟨i⟩(sj) = exp(−
∑

Tνj
⊆Tα⊂Tλ∧⟨i⟩

HT∗
(G;α)), (4)

where α is any node on the path connecting νj and λ∧⟨i⟩. For
the cluster center λ∧⟨i⟩, we calculate its embedding Ci by:

Ci =
∑

sj∈Tλ∧⟨i⟩

pλ∧⟨i⟩(sj) · zj , (5)

where zj is the abstract representation of state sj . Based on
the abstract representations and cluster center embeddings,
we generate a soft assignment matrix Q, where Qij repre-
sents the probability of assigning i-th state si to j-th cluster
center λ∧⟨j⟩. We derive a high-confidence assignment matrix
P from Q and calculate the clustering loss Lcl as follows:

Lcl = KL(P∥Q) =
∑
i

∑
j

Pij log
Pij

Qij
. (6)

Algorithm 1: The Iterative Optimization Algorithm
Input: T
Output: T ∗

1 Initialize β∗
1 , β

∗
2

2 while True do
3 ∆SE ← 0
4 for each brother nodes β1 and β2 in T do
5 β∗

1 , β
∗
2 ← maximize ∆SE caused by the operator

Tmg via Eq. (3)
6 if ∆SE > 0 then
7 Execute the operator Tmg on β∗

1 , β
∗
2

8 Continue

9 for each brother nodes β1 and β2 in T do
10 β∗

1 , β
∗
2 ← maximize ∆SE caused by the operator

Tcb via Eq. (3)
11 if ∆SE > 0 then
12 Execute the operator Tcb on β∗

1 , β
∗
2

13 else
14 Break

15 T ∗ ← T
16 return T ∗

3.3 Abstraction on Optimal Encoding Tree
To compensate for essential information loss induced by sam-
pling, we leverage structural information principles to de-
sign an aggregation function on the optimal encoding tree for
achieving hierarchical abstraction while accurately character-
izing the original decision process.

The optimal encoding tree T ∗ represents a hierarchical
clustering structure of the state space S, where each tree node
corresponds to a state cluster and the height is its clustering
hierarchy. Given the action-observation and reward histories,
we firstly sample randomly to construct a hierarchical state
graph Gh, where vertices represent states and edges represent
state transitions with action and reward information, as the
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Figure 3: The hierarchical abstraction in the SISA.

step 7 in Fig. 2. Because of construction by sampling, there
is an inevitable essential loss of reward or action information
between states in the hierarchical graph Gh. Secondly, we
define an aggregation function on the optimal encoding tree
to achieve hierarchical abstraction from leaf nodes to the root,
as shown in Fig. 3. For each leaf node νi with Tνi = {si}, we
define the level-0 abstraction via function fϕ described in the
pretrain stage and get its level-0 abstract representation z0i :

z0i = fϕ(si). (7)
For each non-leaf node αi whose height is h, we design an
aggregation function using the assigned structural entropy as
each child node’s weight to achieve the level-h abstraction:

zhi =

L∑
j=1

HT∗
(G;α∧

i ⟨j⟩)∑L
l=1 H

T∗ (G;α∧
i ⟨l⟩)

· zh−1
li+j−1, (8)

where L is the number of children nodes of αi and li is its
most left child’s index in tree nodes whose height is h − 1.
Thirdly, we extract three kinds of state relations (transition,
action, and reward) from the hierarchical graph Gh to con-
struct multi-level transition, action, and reward graphs, re-
spectively, as the step 8 in Fig. 2. For convenience, we
take the level-0 transition graph G0

t as an example, and op-
erations on graphs of different relations or levels are simi-
lar. In G0

t , vertices represent the level-0 abstract represen-
tations and edge weights quantify the transition probabilities
between states via sampling. Fourthly, we minimize the K-
dimensional structural entropy of G0

t to generate its optimal
encoding tree T 0

t and calculate the level-0 transition loss L0
tr,

as the step 9 in Fig. 2. Furthermore, we design a conditional
structural entropy to reconstruct the state relation to compen-
sate for sampling-induced essential information loss. For any
two leaf nodes νi and νj in T 0

t , we find their common father
node δ and calculate conditional structural entropy to quan-
tify the transition probability from z0i to z0j as follows:

p(z0j |z0i ) = HT 0
t (G0

t ; z
0
j |z0i ) =

∑
Tνj

⊆Tα⊂Tδ

HT 0
t (G0

t ;α),

(9)
where α is any node on the path connecting the father node δ
and leaf νj . And we decode the abstract representations to re-
construct transition probabilities for calculating L0

tr. Finally,
as the step 10 in Fig. 2, the SI loss Lsi is calculated as:

Lsi = Ltr + Lac + Lre =

K∑
i=1

(Li
tr + Li

ac + Li
re), (10)

where K is the maximal encoding tree height.

4 Experiments
In this section, we conduct extensive empirical and com-
parative experiments, including offline abstraction for vi-
sual gridworlds and online abstraction for continuous con-
trol. And we evaluate final performance by measuring the
mean reward of each episode and evaluate sample efficiency
by measuring how many steps it takes to achieve the best
performance. Similar to other works [Laskin et al., 2020a;
Zhang et al., 2020], all experimental results are illustrated
with the average and deviation of performances with differ-
ent random seeds for fair evaluations. By default, we set the
maximal encoding tree height in SISA as 3, K = 3. All ex-
periments are conducted on a 3.00GHz Intel Core i9 CPU and
an NVIDIA RTX A6000 GPU.

4.1 Offline Abstraction for Visual Gridworlds
Experimental setup. First, we evaluate SISA for offline state
abstraction in a visual gridworld domain, where each dis-
crete position is mapped to a noisy image, like experiments
in Markov abstraction [Allen et al., 2021]. The agent only
has access to these noisy images and uses a uniform random
exploration policy over four directional actions to train the
SISA framework offline. Then, we froze the framework that
maps images to abstract states while training DQN [Mnih et
al., 2015]. We compare SISA against three baselines, includ-
ing pixel prediction [Kaiser et al., 2019], reconstruction [Lee
et al., 2020], and Markov abstraction [Allen et al., 2021].
Evaluations. Fig. 4(a) shows the learning curves of SISA
and three baselines for the visual gridworld navigation task.
For reference, we also include a learning curve for DQN
trained on ground-truth positions without abstraction, labeled
as TrueState. Each curve’s starting point of convergence
is marked in brackets. As shown in Fig. 4(a), SISA con-
verges at 76.0 epochs and achieves a −7.17 mean episode re-
ward. It can be observed that SISA significantly outperforms
other baselines and matches the performance of the TrueS-
tate. Moreover, we visualize the 2-D abstract representations
for the 6 × 6 gridworld domain and denote ground-truth po-
sitions with different colors in Fig. 4(b). In SISA, the hier-
archical clustering based on the structural information prin-
ciples effectively reconstructs relative positions of the grid-
world better than baselines, resulting in its advantage.
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Figure 4: (a) Mean episode rewards for the visual gridworld naviga-
tion task. (b) Visualization of 2-D state abstractions for the 6 × 6
visual gridworld domain.



Domain, Task ball in cup-catch cartpole-swingup cheetah-run finger-spin reacher-easy walker-walk
DBC 168.95± 84.76 317.74± 77.49 432.24± 181.43 805.90± 78.85 191.44± 69.07 331.97± 108.40

SAC-AE 929.24± 39.14 839.23± 15.83 663.71± 9.16 898.08± 30.23 917.24± 38.33 895.33± 56.25
RAD 937.97± 6.77 825.62± 9.80 802.53± 8.73 835.20± 93.26 908.24± 25.62 907.08± 13.02

CURL 899.03± 30.61 824.46± 18.53 309.49± 8.15 949.57± 15.71 919.71± 28.03 885.03± 9.88
Markov 919.10± 38.14 814.94± 17.61 642.79± 65.92 969.91± 8.41 806.34± 131.40 918.44± 12.58

SISA(Ours) 946.29 ± 8.63 858.21 ± 6.31 806.67 ± 8.61 970.45 ± 8.75 924.52 ± 19.04 921.64 ± 12.43
Abs.(%) Avg. ↑ 8.32(0.89) 18.98(2.26) 4.14(0.52) 0.54(0.06) 4.81(0.52) 3.20(0.35)

Table 1: Summary of the mean episode rewards for different tasks from DMControl: “average value ± standard deviation” and “average
improvement” (absolute value(%)). Bold: the best performance under each category, underline: the second performance.

4.2 Online Abstraction for Continuous Control
Experimental setup. Next, we benchmark our framework in
an online setting with a challenging and diverse set of image-
based, continuous control tasks from the DeepMind Con-
trol suite (DMControl) [Tunyasuvunakool et al., 2020]. The
online experiments are conducted on six DMControl envi-
ronments: ball in cup-catch, cartpole-swingup, cheetah-
run, finger-spin, reacher-easy, and walker-walk, to ex-
amine the sample efficiency and final performance. The
Soft Actor-Critic (SAC) [Haarnoja et al., 2018] is chosen
as a traditional RL algorithm, combined with SISA and dif-
ferent state abstraction baselines. The compared state-of-
the-art baselines consist of random data augmentation RAD
[Laskin et al., 2020b], contrastive method CURL [Laskin et
al., 2020a], bisimulation method DBC [Zhang et al., 2020],
pixel-reconstruction method SAC-AE [Yarats et al., 2021],
and Markov abstraction [Allen et al., 2021].
Evaluations. We evaluate all compared methods in six envi-
ronments from the DMControl suite and summarize averages
and deviations of mean episode rewards in Table 1. It can be
seen that SISA improves the average mean episode reward in
each DMControl environment. Specifically, SISA achieves
up to 18.98 (2.26%) improvement from 839.23 to 858.21 in
average value, which corresponds to its advantage on final
performance. In terms of stability, SISA reduces the standard
deviation in two environments. And in the other four envi-
ronments, SISA achieves the second lowest deviations (8.63,
8.61, 8.75, and 12.43), where it remains very close to the
best baseline. The reason is that, SISA minimizes the struc-
tural entropy to realize the optimal hierarchical state cluster-
ing without any manual assistance and therefore guarantees
its stability.

On the other hand, the sample-efficiency results of DM-
Control experiments are shown in Fig. 5. In each experi-
ment, we set the mean reward target as 0.9 times the final
performance of SISA and choose the best baseline as the
compared method. In contrast to classical baselines, SISA
takes fewer steps to finish the mean episode reward target and
thereby achieves higher sample efficiency. In particular, SISA
achieves up to 44.44% improvement in sample efficiency, re-
ducing the environment steps from 45k to 25k to obtain an
851.661 mean reward in ball in cup-catch task.

In summary, in the online setting where reward information
is available, SISA establishes a new state of art on DMControl
regarding final performance and sample efficiency. The hier-
archical abstraction on the optimal encoding tree effectively
compensates for essential information loss in state compres-
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Figure 5: The sample-efficiency results for DMControl experiments.

sion to maintain the original task characteristics, guaranteeing
SISA’s advantages. Fig. 6 shows the learning curves of SISA
and the three best-performing baselines in each task; simi-
larly, their starting points of convergence are marked. SISA
converges at 64000.0 timesteps and achieves an 858.21 mean
episode reward, as shown in the cartpole-swingup task.

4.3 Integrative Abilities
SISA is a general framework and can be flexibly integrated
with various existing representation-learning abstraction ap-
proaches in the pretrain stage. Therefore, we integrate
our framework with the Markov abstraction and SAC-AE,
namely Markov-SISA and SAC-SISA, and choose two tasks
(ball in cup-catch and cartpole-swingup) to evaluate their
performances. Each integrated framework achieves higher fi-
nal performance and sample efficiency than the original ap-
proach, as shown in Fig. 7. The experimental results indicate
that our abstraction framework can significantly optimize ex-
isting abstraction approaches in complex decision-making.

4.4 Ablation Studies
We conduct ablation studies in the finger-spin task to un-
derstand the functionalities of finetune and abstract stages
in SISA. The finetune and abstract stages are removed from
SISA, respectively, and we name the corresponding variants
SISA-FI and SISA-AT. As shown in Fig. 8, SISA remarkably
outperforms SISA-FI and SISA-AT in the final performance,
sample efficiency, and stability, which shows that the finetune
and abstract stages are both important for the SISA’s advan-
tages. Furthermore, the more significant advantages over the
SISA-AT variant indicate that the hierarchical abstraction in
the abstract stage is an indispensable key module of SISA.
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Figure 7: Mean episode rewards of the SISA integrated with abstrac-
tion methods Markov and SAC-AE.

5 Related Work
State abstractions for sample-efficient RL. The SAC-AE
[Yarats et al., 2021] trains models to reproduce original states
by pixel prediction and related tasks perfectly. Instead of
prediction, the CURL [Laskin et al., 2020a] learns abstrac-
tion by differentiating whether two augmented views come
from the same observation. The DBC [Zhang et al., 2020]
trains a transition model and reward function end-to-end to
learn approximate bisimulation abstractions, where original
states are equivalent if their expected reward and transition
dynamics are the same. To ensure the abstract decision pro-
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Figure 8: Mean episode rewards for ablation studies.

cess is Markov, Allen et al. [2021] introduce sufficient condi-
tions to learn Markov abstract state representations. Recently,
SimSR [Zang et al., 2022] designs a stochastic approximation
method to learn abstraction from observations to robust latent
representations. IAEM [Zhu et al., 2022] efficiently obtains
abstract representations, by capturing action invariance. State
abstraction is applied to three-valued semantics to find “fail-
ure” states under assumptions of imperfect information and
perfect recall [Belardinelli et al., 2023].

6 Conclusion

This paper proposes a general structural information
principles-based hierarchical state abstraction (SISA) frame-
work, from the information-theoretic perspective. To the best
of our knowledge, it is the first work to incorporate the mathe-
matical structural information principles into state abstraction
to optimize decision-making with high-dimension and noisy
observations. Evaluations of challenging tasks in the visual
gridworld and DMControl suite demonstrate that SISA sig-
nificantly improves final performance and sample efficiency
over state-of-the-art baselines. In the future, we will evaluate
SISA in other environments and further explore the hierarchi-
cal encoding tree structure in decision-making.
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